

1

Document Name Storage Services for the Fermilab Grid Facility
Authors G.Garzoglio
Document # cd-docdb 3279

Version Date Comment
v0.1-v0.3 Jul 09, 2009 Rearranging interview notes and considerations
v1.0 Jul 29, 2009 First coherent document
v1.1 Aug 19, 2009 Integrated feedback from interviewees
v1.2 Oct 26, 2009 Integrated feedback from Jon Bakken

2

Storage Services for the Fermilab Grid

Facility

Gabriele Garzoglio

Oct 26, 2009

Table of Contents

1. Introduction ... 2

2. Executive Summary .. 3

3. Storage Services and FermiGrid ... 4

3.1. BlueArc .. 4

3.2. dCache / Enstore .. 6

4. Common Problems with Storage and Possible Solutions ... 7

5. Storage Use Cases ... 10

5.1. Production Processing ... 10

5.2. Access to Applications .. 14

5.3. Analysis Activities ... 15

6. Acknowledgments... 17

7. References ... 17

1. Introduction

In preparation for the FY10 budget, the Grid Facility Department has initiated an
investigation on the adequacy of the storage services provided in conjunction with the Fermilab
Grid Facilities (FermiGrid). The user communities of FermiGrid have a variety of use cases and
access patterns that sometimes strain the storage services currently available. This document
describes recently reported problems with storage access from FermiGrid and the current and
future use cases of storage access for the FermiGrid user community. This description can be
used to allocate the appropriate effort to prepare the facility to support the problematic storage
use cases or to work with our stakeholders to modify these problematic use cases. This
information will form the basis for a set of recommendations on how stakeholders should use the
storage services provided via the Grid.

3

2. Executive Summary

This investigation reports a series of storage incidents caused by jobs running on FermiGrid.
The incidents are typically related to jobs’ I/O overloading the BlueArc (BA) servers. We report
problematic areas specific to BA; in particular, disk cost vs. performance, data migration
policies, lack of monitoring and controls, change in user access patterns, and possible synergies
with other storage solutions (sec. 3.1). We also discuss typical uses of dCache from FermiGrid,
noting that Kerberos is not supported by policy and describing how X509-authenticated transfers
can be used more effectively, by transferring multiple files within a single security session (sec.
3.2).

The report discusses the causes of common storage problems. In particular, uncoordinated
concurrent access to storage, lack of data traffic controls for the BlueArc, use of the file system
as a file catalogue, running “short” jobs, and users not adhering to recommended best practices
(sec. 4). Some classical solutions are also discussed, such as the adoption of a peer-to-peer
storage solution, data access queuing, and job throttling (sec. 4).

The document concludes describing the storage solutions for the use cases of some members
of the Fermilab community, including DZero, CDF, Minos, CMS, and the future neutrino
experiment (sec. 5). These solutions are organized according to activities, such as production
processing (sec. 5.1), access to applications (sec. 5.2), and analysis (sec. 5.3).

For FY10, The areas of work uncovered by the investigation are the following:

• Investigating how emerging storage solutions, such as Hadoop [7] or Lustre [10], would
serve our use cases, studying the synergy with the BA storage (point 2 and A sec. 4).

• Investigating how peer-to-peer storage solutions adopted in the past, such as DiskFarm [8],
meet our needs today (point A sec. 4).

• Investigating how SAM can interface the BA to coordinate access to files for the use cases of
the neutrino experiments (point 3 sec. 4).

• Investigating the availability of standard or commercial data queuing services, equivalent to
fcp [6] in terms of features, low authentication overhead, etc. (point 1 sec. 4)

• Investigating how to shape traffic to the BA by intercepting I/O directed to it, similarly to
Parrot (point 2 sec. 4 and point 5 sec 3.1).

• Implementing ephemeral home areas at the FermiGrid worker nodes, rather than allowing
file writing directly to the BA (point 5 sec. 4).

• Continuing the program of reorganizing the BA volumes to optimize rate of access and to
compartmentalize disruption of service (point 5 sec. 4).

• Educating users in low-overhead usage of X509-authenticated file transfers (point 2 sec. 3.2).

4

• Understanding if idle CPUs at CDF grants changing how SAM interfaces to dCache, from
using the dcap protocol to using SRM [9] (par. “CDF” sec. 5.1).

• Producing a catalogue of successful use cases and their storage solution (sec. 5).

3. Storage Services and FermiGrid

In the current infrastructure, there are two major storage services accessible from FermiGrid:
the BlueArc and dCache systems. FermiGrid relies on other groups for the maintenance and
support of these storage systems. BlueArc provides a remote file system mounted to the
FermiGrid nodes accessible via POSIX commands; dCache and Enstore provide remote storage
service accessible via command line tools pre-installed at the FermiGrid nodes. The current
intended usage of these systems is discussed below.

3.1. BlueArc

FermiGrid provides access to a cluster of worker nodes via Grid interfaces and to an
interactive login machine (fnpcsrv1). These nodes mount a series of partitions from the BlueArc
system. Permissions are set according to the requirements of the Open Science Enclave baseline
[1]. The partitions are accessible by general Grid users and have the following intended usage
[2]:

• Home areas: two partitions, one (fermigrid-home) for Grid users to store temporary files
from the worker nodes (the area is purged regularly); one (gpfarm-home) only available to
the integrative login machine.

• Product areas: two partitions with pre-installed software; one (fermigrid-products) with UPS
products available for read and execute from the general purpose grid cluster; one (fermigrid-
oseclient) with Grid and Condor software exported to all worker nodes. An additional
partition (fermigrid-gceclient) with OSG client software will be exported to the interactive
login machine (fnpcsrv1) in the future.

• Application areas: two partitions to make applications available for read and execute to the
worker nodes; one partition (fermigrid-app) is for all remote grid users and is writable via
grid interfaces (quota is 30GB per VO); the other partition (fermigrid-fermiapp) is for
Fermilab-based experiments and is writable from non-Grid Fermilab machines.

• Data area: a partition for storing intermediate results of computation or for pre-staging input
data that needs to be analyzed multiple times (default quota is 400GB per VO, but can be
extended)

• VO-specific areas: FermiGrid mounts special purpose areas (e.g. extra partitions for data,
code, etc.) for some major stakeholders (CDF, MINOS, DES, ILC).

5

In addition to these shared partitions, worker nodes provide local temporary and scratch
space. Additional disk partitions used for administrative purposes are also available.

These are a few issues to consider when serving new disk space through the BA.

1. Disk cost vs. performance: an experiment that wants to use disk space from the BA should
consider its requirements for both amount of space and rate of access. If the area is going to
be made available from a few machines only, then a reasonable choice is buying slow disks
(7.2k rpm) with a nominal 75 IO/s and an effective 37.5 IO/s (disks perform 1 read operation
every write) for up to $1 per GB. If the area needs to be served from multiple machines, e.g.
from a Grid cluster, buying faster disks might be a better option e.g. 10k rpm at an effective
100 IO/s or 15 rpm at an effective 150 IO/sec. These disks, however, are more expensive
than $1 per GB. Another alternative for the use case of the Grid is buying a lot of small size
disks, so that information can be accessed from multiple disks in parallel.

2. Data migration policies: the BA can transparently transport files from disk to disk. In
principle, BA allows administrators to express policies on file age, extension, path, etc. This
could be useful if an experiment bought some fast and some slow disks, so that depending on
the expected access pattern, the BA can optimize the placement of the files. For example, if
most people access files no older than 2 weeks, then the BA could migrate files older than 2
weeks to the slow disk and place new ones on the fast disk. In reality, this feature does not
seem to work as advertised for some customers, such as US CMS. For US CMS, while
migration to slower disks is automated, migration to faster disks is still a manual process. In
addition, US CMS is adding more controllers and disks to mitigate BA bottlenecks.

3. Lack of monitoring and controls: the current BA system does not have good internal or
external monitoring. Internal monitoring shows the status of the storage hardware, such as
load on the disk controllers. External monitoring shows what user or process is causing IO
operations. Lack of internal monitoring results in long troubleshooting time when users
observe degradation of service (e.g. see Common Problems with Storage par 4 point 1.b).
Lack of external monitoring requires that the system that mounts the storage (i.e. FermiGrid)
limits the storage access, in order to guarantee a certain overall quality of service. In
principle, this can be achieved by controlling the number of concurrent IO via job throttling,
data queuing, etc. In reality, FermiGrid has no effective controls over user’s access to storage
(see par 4 point 2).

4. Change in user access patterns: when experiments repurpose disk areas on the BA and
access patterns change e.g. with increased load, different file size, etc., it is a good practice
discussing such changes with the BA administrators. This is especially true when using disks
for interactive access, rather than for batch access. Administrators, in fact, can adjust the
disks parameters to fit the new needs. For example, while latencies of a couple of seconds
would not be acceptable for interactive access, it might be acceptable for batch access.

6

5. Synergy with other solutions: an experiment can use the BA together with other storage
solutions. For example, an experiment might keep old data on dCache and new data on BA,
or vice versa. Understanding what configuration better serves each use case should be
investigated by activities spurred by this document.

3.2. dCache / Enstore

FermiGrid makes available storage client commands at the worker nodes. These include
standard tools such as curl, wget, as well as GridFTP client, dcap / SRM [9] clients for dcache,
and Enstore1 commands. This is a list of data transfer options organized per authentication
method:

1. Kerberos: to adhere to the Open Science Enclave baseline, Kerberos tickets are not available
by default at worker nodes2. Therefore, transfer mechanisms such as kerberized dcap, are
generally not available. For some legacy systems, such as for CDF computing, wavers to this
policy have been obtained in the past. In general, commands such as scp / ssh cannot be used.
A common benefit of using kerberized data transfer protocols is the low overhead in
establishing the security session. Since Kerberos is generally banned, users might need to
appropriately use X509-based transfer protocols to reduce their authentication overhead (see
below).

2. X509: One reported concern from users accessing dCache, especially for small files, is the
excessive overhead for establishing the security context for X509 via SRM or GridFTP. In
reality, it seems a little known fact that both the SRM and FTP protocols (and their common
client implementations: srmcp and globus-url-copy) support the transfer of multiple files at
the same time3. In particular for GridFTP, only the control channel needs to be authenticated
and multiple data channels can then be opened for each of the multiple files. We recommend
that this fact be advertised for transfers within Fermilab. As a note, on the WAN, this transfer
mechanism may incur in other overheads, since it is preferable to reuse an opened data
channel, rather than opening a different channel per file, as the TCP windows takes time to
reach an optimal size.

3. UID/GIS is a weak authentication mechanism, supported through dcap or encp. To limit the
risk of unauthorized access, such mechanism is restricted for usage within Fermilab only for
dcap and to nodes that are authorized to mount pnfs for encp. It should be noted that Grid
jobs are typically mapped to generic local pool or group accounts i.e. UID/GID cannot be

1 Enstore commands are available only on nodes that mount the pnfs file system, e.g. D0 CAB.
2 Among other reasons, this policy prevents that compromised nodes in the Open Science Enclave provide

attackers with credentials that can be exploited to compromise nodes in the General Computing Enclave.
3 This of course assumes that the user does not specifically request to authenticate each data transfer channels,

which would defeat this mechanism to minimize the authentication overhead per file.

7

used in general to access files stored from a personal user account. To circumvent this issue,
for many users, communities such as CMS enforce the mapping of Grid credentials to local
personal accounts, rather than generic pool or group accounts.

4. Common Problems with Storage and Possible Solutions

This is a list of common problems with storage services, as exposed during this investigation:

1. Uncoordinated concurrent access to storage: when accessing files from the BA, especially
if the files are small like for some Minos use cases, multiple concurrent access may lead to
problems with the storage system. The solution for Minos was queuing (serializing) access
with a custom script (cp1). Two caveat to this solution:

a. We think that it should be investigated using fcp servers [6], operated by FermiGrid,
instead of a custom script. This would be a more common solution, considering that
the fcp software is maintained by the REX department. Fcp servers provide a
mechanism to queue up storage access requests. Clients request access to storage pre-
pending the fcp command to the regular storage command line tools. The fcp
command is configured to contact an fcp server and block until the queued higher-
priority requests are finished. We propose that FermiGrid offer fcp servers, for the
short term. For the long term, we propose to investigate some standard or commercial
data queuing service, equivalent to fcp in terms of features, low authentication
overhead, etc.

b. This solution helped Minos avoid overloading the BlueArc controller. In general,
however, this works only if all clients of the BA are properly queued. It seems that a
recent incident has been caused by the fact that controllers on the back-end SAN are
shared between the DZero databases and the MINOS data: multiple large data
transfers overlapped during DZero database back ups. This DZero activity was
independent from Minos data access and data streaming was not queued. The
automatic load balancer of the controller could not cope with the traffic (see plots in
Fig 1). Manual adjustments were necessary to rectify the problem, even if a full
resolution may not be reached yet.

8

Fig 1: Latencies in the Read (blue line) / Write (green line) access of Minos files from the BA.
Typical latencies are 5 – 10 ms. During a problem with concurrent DZero database backups to

the BA, there were latencies up of 1 – 2 order of magnitudes. The problem was rectified by
manually adjusting the load balancing of the BA controllers (plots courtesy of Art Kreymer)

2. Lack of data traffic control for BA: because of a lack of external monitoring, the BA relies
on the Grid facility to impose limits on the data traffic. On the other hand, FermiGrid has
limited control over the data access patterns of user jobs. Job throttling has limited
effectiveness, because under high-load conditions, a few misbehaving jobs can overload the
BA. Data queuing is a possible solution, but difficult to enforce because it requires all users
to change their code (see above). Other solutions should be investigated, including: (a)
automatically intercept IO to the BA (as done for accessing applications by Parrot) and queue
the requests e.g. via fcp; (b) studying other storage solutions, such as Hadoop, which possibly
better shape the network traffic for data access. These data throttling techniques should be
configured considering that the bottleneck is not the 10 GBit/s network connection with the
BA system, rather the back end SAN.

3. Use of the file system as a file catalogue: Attempts by VOs, such as Minos, to use the BA
file system as a file catalogue resulted in a particularly high load for the BA. In a reported
incident, the file catalogue was created periodically by issuing recursive file list commands
(ls -R) on large sections of the BA. The computing division supports data handling solutions,
such as SAM, that offer a file cataloguing service. In particular for SAM, the catalogue is
used in conjunction with file caching technologies (SAM cache and dCache), so that the
catalogue can be kept up to date without the need for recreating it periodically. In principle,
SAM could interface the BA storage, either defining a SAM internal cache for it (for a
limited number of files) or interfacing it as an external storage, like dCache (for a large
number of files).

4. Short jobs: Short running jobs that interact with the file system may create a BA overload.
In a reported incident, ILC jobs downloaded input files from the BA to the worker node and
uploaded the output at the end of the job, as per best practices. The logic of the job, however,

9

was such that the input file was never processed (it had been processed by other jobs before)
and the job lasted about 15 seconds. The resulting intensive IO to the BA caused a disruption
of service. In general, “very short jobs” tend to create problems for FermiGrid, as they tend
to show characteristics of data intensiveness, not very well supported by computational Grids
in general. Problems running very short jobs have been observed in the past also with DES.

5. Users not adhering to best practices: When running on FermiGrid, there are accounts of
incidents caused by users not adhering to the FermiGrid best practices. Adhering to these
best practices does not guarantee freedom from system problems; rather it tends to mitigate
potential troubles. These violations include reading input data directly from the BA, instead
of making a local copy first; ignoring recommended fair-share quotas on local disk;
inappropriate use of home areas, including using BA mounted home areas as local scratch
disks. To address some of these issues, FermiGrid is devising a range of solutions, which
include creating ephemeral home areas at the worker nodes i.e. moving the content to the
user at the end of the job before erasing it from the worker node; reorganizing the BA
volumes to optimize rate of access and so that an incident related to an experiment-specific
area does not affect other experiments.

In summary, to address overload problems with the file system servers, these are the classical
solutions that can be applied to a Grid computing facility:

A. Adoption of a peer-to-peer storage solution: files are stored across a large number of nodes
e.g. the worker nodes. This way, clients do not all contact and potentially overload a few file
servers. Typically, the system can manage dynamic data replication, so that there is no data
loss should a node be lost. Examples of these file systems include Hadoop [7] and DiskFarm
[8]. Hadoop is an open source project adopted by Yahoo. Single files are striped across
multiple nodes. The OSG Storage group at Fermilab and other groups in OSG are studying
the properties of this storage solution. DiskFarm was developed and adopted at Fermilab.
Individual files are distributed across worker nodes. A criticism of such solutions is that they
require the installation and operation of servers at the worker nodes and that they make
reinstallation of the nodes difficult if the node holds persistent data. To address the latter,
automatic redundant file replication would lift the need to manually restore the status of the
persistent data on the node.

B. Data access queuing: I/O requests from clients are queued, so that the concurrent requests
served do not overload the file server. Data queuing can be implemented by different
systems, including fcp and SRM. As noted, this solution depends on clients utilizing the
queue, rather than accessing the data transfer servers directly.

C. Job throttling: the batch system is notified that the jobs are I/O intensive, so that only a
limited number of jobs can be scheduled at one time or on certain nodes. This is a partial

10

solution to the problem, as already a few misbehaving jobs can overload a file server. In any
case, it is a solution easy to implement at least on the Condor batch system.

5. Storage Use Cases

This section discusses the storage use cases of major Fermilab VOs. It is not intended to
describe in detail the computational model of each VO; rather, to highlight aspects of interest in
the usage of storage.

5.1. Production Processing

Storage problems with production processing tend to be more easily understood, as they
happen on dedicated facilities, accessible by a few power users, through well-understood
applications. These are a few highlights of how different communities use storage for production

Minos: Minos keeps files from raw data to farm output to official root-tuples, both in dCache
and in enstore for production and analysis. These files are catalogued via SAM. File delivery to
jobs is regulated via SAM mechanisms (projects), even if the actual data transfer is still
responsibility of the job. Raw data files range from 70 MB to 250 MB, produced at the rate of 1
file per hour. Raw data is concatenated monthly into file sizes better suited for tape (~ 7GB) and
written to a separate set of tapes at Fermilab. Additional copies of the raw data are also kept in
Minnesota and Texas. The full reconstruction output files are similar in size to the input files, but
these are rarely accessed. Analysis is performed from much smaller root-tuple files, which are
concatenated to a size of roughly 1 GB per day. All official files are available from dCache. Files
are stored on 20TB of disks on read/write pools, so that stored data is immediately available,
without first going to tape. This prevents the system to mount tapes unnecessarily. Data of
current interest is also kept on the BA, mainly for analysis. Roughly, there are about 20 TB
DCache disk, 90 TB BA disk, and over 300 TB on tape.

DZero: DZero production uses SAM-Grid [3] for both data processing and montecarlo. SAM-
Grid provides access to all data through SAM via a dedicated SAM station, with several SAM
caches and disks. Files are large by design; raw files are around 1 GB. Fig 2 shows the
distribution of file sizes for all reconstructed, thumbnail, and root-tuple files from Jan 2003 to
Mar 2005 (note that the diagram does not include raw files) [4].

11

Fig 2: A diagram of the relative abundance of DZero files of a given size. The diagram
includes 996,227 files of reconstructed, thumbnail, and root-tuple data tiers. The mean and

median size is 0.4 GB.

For some production activities, such as montecarlo generation, the output file sizes is
maintained around 1 GB by merging an appropriate number of smaller files. These smaller files
are produced by individual jobs and are temporarily stored to “durable” SAM location. Durable
locations consist of dedicated disk servers accessible by GridFTP and maintained at an optimal
operational load by fcp; data is automatically cleaned periodically after merging by resident cron
jobs interfaced with SAM.

CMS: CMS production activities at Fermilab are run on the “OSG” cluster, which consists of
1,200 nodes and 6000 cores. The cluster is accessible from the Grid via 4 Computing Elements
(CE). Jobs are managed via the GlideIn WMS (pilot-based) system. The bootstrapping code of
the pilot jobs is transferred from the CE to the WN via condor internal transfer mechanisms (see
also par “Other communities” in sec. 5.2). The GlideIn system (condor) manages the transport of
the stdout, stderr, and log files from user jobs. The worker nodes do not mount any shared file
system for data transfer (see also par “CMS” in sec. 5.2). Data is staged in and out of the worker
nodes from dCache via X509-authenticated SRM / GridFTP transfers. Weakly-authenticated
dcap transfers from dCache to the worker node are also allowed if the unix file permissions are
satisfied (i.e. the user has been previously strongly authenticated). In comparison to the general
access dCache pool (fndca), the CMS pool has order of magnitude more cache disk. Because of
the size of the general access dCache pool, experiments such as Minos cannot hold all of their
dataset on disk anymore, as they did earlier, to allow quick data lookup from cache.

CDF: CDF has a processing workflow similar to CMS and DZero. Similarly to CMS, some
user access files in dCache directly, after having selected these files through the SAM metadata
catalogue. Similarly to DZero, some other user rely on SAM for all their data handling needs.
Dissimilarly to DZero, however, SAM does not manage its own cache; rather, it interfaces to
dCache through the dcap protocol. This deployment choice has the consequence that SAM

12

cannot synchronize with the information on the availability of the files from dCache; therefore,
SAM cannot order file delivery according to waiting time (e.g. first deliver files in the cache,
while fetching files from persistent storage). Hence, a fraction of the jobs may unnecessarily wait
idle for file delivery from tape. To address this problem, CDF overbooks its cluster by 20%,
considering that one job out of five will be waiting for files at any one time. To better handle this
situation, improvements to the batch system have been requested to the condor development
team.

Allowing SAM to interface to dCache via the SRM interface would mitigate this efficiency
problem. Using SRM, in fact, SAM can ask the storage to schedule the delivery of a limited
fraction of the dataset (look-ahead number), if the data is not available in the cache. For request
units (projects) containing “a lot” of files, however, SAM only issues a limited number of look-
ahead requests to SRM at any one time, to avoid flooding the system. In this case, some files
may be in cache, but SAM might know only at a future round of SRM requests. The number of
look-ahead requests to SRM can be configured and in general is proportional to the number of
jobs. It should be noted that this solution is better than using dcap, where there is no knowledge
of cached files, but it is not as good as using SAM internal caches, where there is complete
knowledge of file statuses. It should be noted that the conversion from using dcap to using SRM
would require a reorganization of the dCache pool, which today relies heavily on Kerberos doors
and does not support X509 doors. This conversion might also have implications on the CDF data
handling model.

For some data, such as the stnptuple, in addition to using SAM catalogue, CDF catalogues its
data in text files containing filenames, made available through a web server. Such cataloguing
method is custom and potentially error prone.

Future Neutrino Experiments: The Fermilab scientific program at the intensity frontier
includes several experiments, some of which, such as Minos, that have already started and some
that will start in the next few years. These experiments are Minos, MiniBooNE, NOvA, Minerva,
MicroBooNE, ArgoNeut, Mu2e, and DUSEL. Fermilab will provide some computational and
storage facilities for these experiments; the projected needs for computing and storage, including
disk vs. tape, is described elsewhere [5]. This section highlights some of the storage
requirements, as they are currently understood.

For Minerva, the current prototype detector is 20% of its final size; data handling
considerations below assume the full detector. The data handling needs are built around the
concept of “spill” i.e. one injection of beam that generates events in the detector. The relevant
data tiers for production processing are Raw data from the detector, Pedestal files, CalDigit (raw
data calibrated with pedestals), ReconData (reconstructed data from CalDigit input), DST
(processed data from ReconData). Their storage needs are discussed below. The estimated

13

processing time from raw to DST formats is about 1 sec / spill, even if this may grow in the
future.

• The Raw data files will be in root format and expected at 1GB in size. One file contains an
hour of data (called a subrun) or 1500 spills. 10-24 files are expected in a day (called a run).
3.3 TB of raw data will be produced per year. The data needs scratch disk space for
processing and will be store on tape permanently.

• Pedestal files will be 400 MB in size and will be acquired every few hours. This will
generate about 500 GB / year of data. Like for raw files, pedestal files need scratch disk
space and permanent tape storage.

• CalDigit files are estimated at 85MB in size, generating about 300 GB / year. Recent
versions of CalDigit data will need to be available on disk for user processing and all data
will need to be stored on tape.

• ReconData files are about 100 MB in size and 450 GB / year. Several recent versions of
ReconData will need to be stored on disk for user processing. All the data will need to be on
tape.

• DST files resulting from processing subruns are about 50MB each file. Since DST are the
main input of analysis jobs, they will be merged together by run, yielding an estimated 500-
1.2 GB per file. DST will consist of about 200 GB / year and will need to be available on disk
for user analysis and tape for permanent storage.

All production applications, including montecarlo, need access to a database, even if it is
believed that this can be reduced to accessing local information, at least for offsite usage.

For montecarlo, 60 million simulated spills (events) will be produced per year (10 times the
amount of real spills acquired). Since the size of an event is similar to the size of the raw data for
a spill, the amount of montecarlo data produced is 33 TB / year. The estimated generation time is
10 sec per event. All montecarlo data will also need to be processed through the chain of data
tiers as the raw data. Montecarlo jobs require access to Raw or CalDigit files, an important
constraint for data handling needs.

For NOvA, the processing chain is still being designed and it is going to be similar to the one
of Minos. It is estimated that NOvA will have a total dataset roughly three times the size of
Minerva. The size of the data resulting from the processing chain has not been fixed yet. For
montecarlo, however, it is expected that jobs running 1 day will produce files of a few 100s of
MB; after reconstruction, these will be 1-2 GB per file. NOvA is considering the BlueArc for
data access on FermiGrid, even if people understand the potential need for more scalable
solutions.

14

5.2. Access to Applications

A job running on FermiGrid can access its application by different means. This section
describes how this is done by different communities.

Minos: Minos jobs access their application through Parrot. The system makes the application
distribution appear as local. The application can be a set of executables and dependent libraries
or an archive. When a job tries to access a file in the distribution, Parrot intercepts the I/O
request and issues a transfer command for that file to a web server. The web server can be made
more scalable using a web proxy (squid.fnal.gov). The web proxy ends up caching the most
popular versions of the application. Once the application file is transferred to the worker node, it
is accessed by the job transparently. This mechanism has the advantage that the data access
traffic can be shaped / queued through the web proxy. In addition, jobs running the same
application on the same worker node can be configured to transfer the application only once.
Using Parrot has been very useful for initial deployment at Fermilab and at the TACC TeraGrid
site. For full scale production, however, Minos is considering installing all software locally, to
avoid Parrot’s overheads.

Parrot is typically used only for applications because it does not offer file selection through a
metadata catalogue; rather, the job needs to know the location of its application files in the
distribution. However, for simple data access use cases, this solution could be more scalable than
direct access to a remote file system (e.g. the BA) and should be investigated.

CDF: like Minos, CDF also uses Parrot to access application at clusters in Europe. At the
CDFGrid cluster, applications are accessed through a code server. At the NAMGrid cluster,
applications are made available as archives and downloaded by the job at startup. Access to these
archives is made scalable through the use of web server proxies.

DZero: DZero production access job applications from SAM. Applications are stored as
archives and each has associated metadata in SAM. Once SAM makes available the application
to the job, the application is typically transferred to the worker node via GridFTP / fcp.

For analysis, the DZero offline code-base (executables and libraries) is available at all CAB
worker nodes through NFS. The code can be used either as is (e.g. to run the reconstruction
application) or by linking some of its libraries to code supplied by the user. For the two main
analysis use cases (analysis of a thumbnail and of a root-tuple), DZero makes available job
submission tools that orchestrate the delivery of the user-supplied code to the worker nodes.
Before submission, the user makes a private code release on a disk area and builds an executable:
this release is the user-supplied code. The users submit their jobs using the appropriate
submission tool, specifying the location of their release area and the name of the executable. The

15

tool makes an archive of that area and submits a job bootstrapping script. At the worker node, the
bootstrapping script copies the archive and runs the specified executable. The transfer protocol
for the copy depends on the location of the code release. If it is on the user's machine, then it is
copied with rsync via ssh; if it is on a project disk (e.g. bluearc), then it is copied over the remote
file system with cp.

CMS: the CMS facility makes available applications to its two clusters (OSG and LPC) via a
read-only NFS file system. The system consists of 4 servers (1 master and 3 slaves) and has a
capacity of about 40 MB/s.

Future Neutrino Experiments: the characteristics of each application depend on the specific
experiment. For Minerva, the code consists of a 6GB build area. Generating a standalone
executable is considered difficult and is deferred to a later time. The current approach is
distributing the code via NFS. NOvA also is planning on a similar approach on FermiGrid. They
want to distribute the application as a tar ball to exploit opportunistic resources.

Other communities: other communities directly send the application to the worker node via
condor mechanisms. On FermiGrid, condor is configured to stage the application in the user’s
home area, to make it available to the worker nodes. Since the home areas are mounted from the
BA, this might in principle create problems of concurrent access, especially if the application
archive is large. In practice, to date, there are no BA incidents related to application transfer.
Despite the ability of condor to transfer the application using internal mechanism (i.e. without
relying on a shared file system), this configuration is not the default option on the Grid, because
the official condor job manager does not support it. VDT makes available a job manager
(jobmanager-nfslite) that supports the condor internal transfer mechanism. Some facilities, such
as CMS have used this job manager with good results. Drawbacks of the job manager-nfslite are
that it only works with the condor batch system. Also, testing showed that it does not work for
jobs of certain non-HEP VO's that rely on workflow managers such as Pegasus. In any case, for
security considerations, it is preferable to transfer the application (as well as the user proxy and
stdout/err) via internal batch system mechanisms. FermiGrid, therefore, is considering adopting
the job manager-nsflite.

5.3. Analysis Activities

Analysis activities are typically uncoordinated and tend to cause most of the problems when
accessing storage. These are the main mechanisms used to access data for analysis.

DZero: DZero analysis jobs are mostly run on the CAB cluster, using local batch system
interfaces for job submission. Opportunistic FermiGrid resources are also used depending on the
need. To give a sense of scale, the amount of computation performed monthly on CAB is around

16

one million CPU hours. Access to official data is controlled via two SAM stations, distinct from
the one dedicated for production, managing about 750 TB of cached data. The system has
successfully transferred more than 200 TB of data per day. An additional 300 TB of disk space
are available from the BA (the so-called project disks). Some of these disks are mounted to the
worker nodes. Users typically use these disks to store results of a data skim or to process an
intermediate input root-tuple, not available from SAM. Input data is generally copied from the
project disks to the worker nodes using kerberized cp. Some of these transfers are authenticated
through Kerberos keytab files installed at the worker nodes. Like other communities, also DZero
has faced problems when transferring in an uncoordinated fashion too much data (order of
100GB) from the BA.

CDF: Similarly to DZero, CDF officially uses SAM to handle input data to analysis jobs.
Many users, however, access data directly from dCache, without relying on SAM. This access
mode does not conserve a record of the dataset popularity, a valuable piece of information to
understand the community data access patterns. Coordinating the transferring of the output is
responsibility of individual groups. A successful configuration consists in deploying a group-
maintained file server that provides a GridFTP interface, queued by FCP. Periodically, data of
general interest, such as montecarlo files, is stored to SAM using cron jobs.

Minos: Analysis jobs typically access input data from the BlueArc, ideally to minimize delays
in the access. All worker nodes mount 90 TB of dedicated disk, as the quota on the public areas
is considered too small. This disk contains the two most recent cycles of reconstructed data,
which consist of root-tuples of 1-2 GB in size (the result of about 1 day of concatenation). Other
input data consists of condensed root-tuples from different analysis groups, index of montecarlo
events, etc., all files very small in size and difficult to concatenate.

Future Neutrino Experiments: Minerva has provided some considerations on their storage
needs for analysis. The main input for analysis jobs is DST files (sec. 5.1), consisting of about
200 GB / year. In addition, the collaboration plans to eventually use microDST, a summary data
format anticipated at 12 kB / spill in size i.e. 6-12 GB / year. The envisioned processing pattern
consists in physicists running on the order of 50 parallel jobs, each accessing 1 GB files to
optimize throughout. Analysis may need access to a subset of a database, but this may be
reduced to accessing local information only. With respect to DZero or CDF data, Minerva data
will be more I/O bound, because it requires less CPU time per event. This will be especially true
in the early days of the experiment, where users may be running over the full sample and
rejecting 90% of the events almost instantaneously. There are currently no estimates on the
required number of jobs per day, but in terms of number of people, the size of the collaboration
is about one tenth of the size of DZero or CDF.

17

CMS: US CMS runs most of its analysis at Fermilab at the LHC Physics Center (LPC)
cluster, which consists of about 240 nodes and 2000 cores. The LPC cluster is partitioned in two
sections: (1) is used for interactive login to a small set of load-balanced nodes; (2) is used for
batch processing and it is managed by condor. Home areas for the interactive section are served
by the BlueArc, which implements a quota system. The batch section also mounts the BlueArc
areas, but its usage is discouraged. User jobs in the batch section are managed by the GlideIn
WMS system, which uses condor internal mechanisms to transfer the bootstrapping script and
stdout, stderr, and log files. The application is accessed from an NFS read-only file server (sec.
5.2). Data input and output is stored in dCache and accessed via the dcap protocol.

6. Acknowledgments

This document could not have been written without the patience and availability of the people
that I have interviewed. Their input on has been of fundamental relevance. In particular, I want
to thank Adam Lyon, Qizhong Li, Robert Illingworth, Rick St. Denis, Lee Lueking, Heidi
Schellman, Art Kreymer, Ray Pasetes, Matt Crawford, Ian Fisk, Steve Timm, and Keith
Chadwick.

7. References

[1] Open Science Enclave Baseline: CD DocDB 2573

[2] FermiGrid Bluearc NAS Storage: http://fermigrid.fnal.gov/fermigrid-bluearc.html

[3] G. Garzoglio, “A Globally Distributed System for High Energy Physics Computation”,
published by Verlag Dr. Müller, Saarbrücken, Germany, 2009. ISBN 978-3-639-16506-7

[4] A. Iamnitchi, S. Doraimani, G. Garzoglio, “Workload characterization in a high-energy data
grid and impact on resource management”, Journal of Cluster Computing, Jan 2009, DOI
10.1007/s10586-009-0081-3

[5] Fermilab Neutrino Program Computing Resource Needs Assessment: CD DocDB 3205

[6] FCP: Farm Remote Copy Utility: http://www-isd.fnal.gov/fcp/

[7] Hadoop: http://hadoop.apache.org/

[8] Disk Farm: http://www-ccf.fnal.gov/dfarm/

18

[9] I. Bird, B. Hess, A. Kowalski, D. Petravick, R. Wellner, J. Gu, E. Otoo, A. Romosan, A. Sim,
A. Shoshani, W. Hoschek, P. Kunszt, H. Stockinger, K. Stockinger, B. Tierney and J. Baud,
“SRM (Storage Resource Manager) Joint Functional Design”, Global Grid Forum Document,
GGF4, Toronto, Feb. 2002

[10] Lustre File System: http://www.lustre.org

